COMPANY PROFILE:
MODULAR BUILDING INSTITUTE

Founded in 1983, the Modular Building Institute (MBI) is the only international non-profit trade association serving the modular construction industry. Members are manufacturers, dealers and contractors of commercial modular building projects, as well as associates supplying building components, services, and financing.

Members are located in 12 countries around the globe and provide all types of building space, from relocatable buildings to complex multi-story permanent construction projects. MBI’s mission is to grow the industry and its capabilities by encouraging innovation, quality, and professionalism through communication, education, and recognition.

Each year, MBI hosts World of Modular, the largest gathering of professionals in the modular construction industry. The next World of Modular will be held March 24-26, 2012 in Orlando, Florida.

For more information about the industry visit, www.modular.org.

ABOUT THE INDUSTRY:
COMMERCIAL MODULAR CONSTRUCTION

Commercial Modular Buildings are non-residential factory-built structures designed to meet federal, provincial, state and local building codes and in some cases designed to be relocated. The commercial modular building industry is comprised of two distinct divisions:

Permanent Modular Construction – PMC is an innovative, sustainable construction delivery method utilizing offsite, lean manufacturing techniques to prefabricate single or multi-story whole building solutions in deliverable module sections. PMC buildings are manufactured in a safe, controlled setting and can be constructed of wood, steel, or concrete. PMC modules can be integrated into site built projects or stand alone as a turn-key solution and can be delivered with MEP, fixtures and interior finishes in less time, with less waste, and higher quality control compared to projects utilizing only traditional site construction.

Relocatable Buildings – A partially or completely assembled building that complies with applicable codes, and state regulations, and is constructed in a building manufacturing facility using a modular construction process. Relocatable modular buildings are designed to be reused or repurposed multiple times and transported to different building sites.

This report focuses on the Permanent Modular Construction (PMC) Buildings Division with a North American focus. See page 20 for our Global Outlook.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOUT PMC</td>
<td>4-5</td>
</tr>
<tr>
<td>MCGRAW-HILL/ FMI REPORTS</td>
<td>6-7</td>
</tr>
<tr>
<td>SUSTAINABILITY: MINIMIZING WASTE</td>
<td>8-9</td>
</tr>
<tr>
<td>KEY MARKETS SERVED</td>
<td>10-15</td>
</tr>
<tr>
<td>DATA COLLECTION</td>
<td>16-19</td>
</tr>
<tr>
<td>GLOBAL OUTLOOK</td>
<td>20-21</td>
</tr>
<tr>
<td>CASE STUDIES</td>
<td>22-24</td>
</tr>
<tr>
<td>2010 SUMMARY</td>
<td>25</td>
</tr>
<tr>
<td>BOARD OF DIRECTORS & MBI STAFF</td>
<td>26</td>
</tr>
</tbody>
</table>
Countless industries regularly use permanent modular construction including schools, banks, restaurants, hospitals, medical clinics, day care centers and correctional facilities—just to name a few. The number of industries (as measured by the North American Industry Classification System (NAICS)) that utilize our services are numerous, but the most common categories include:

- 236116 New Multifamily Housing Construction
- 236210 Industrial Building Construction
- 236220 Commercial and Institutional Building Construction

The primary benefits of permanent modular construction include:

1. **Streamlined construction process** (in many cases occupancy occurs 50 percent faster than with conventional construction)
2. **Resource efficient**—less labor and fewer materials wasted.
3. **Reduced environmental impact**—less site damage, less material exposure and less waste in landfills.

Commercial modular buildings are non-residential structures, 60% to 90% completed “off-site” in a controlled environment, and transported and assembled at the final building site. This can comprise the entire building or be components or subassemblies of larger structures. In many cases, modular contractors work with traditional general contractors to leverage the resources and advantages of each type of construction.

The term “modular” describes a construction method or process where individual modules stand alone or are assembled together to make up larger structures. Unlike relocatable buildings, PMC structures are intended to remain in one location for the duration of their useful life.

An important but subtle difference for this report is that modular construction refers to three-dimensional building “modules” that are prefabricated off site and transported to the site to make up the entire building, rather than prefabricated mechanical systems or wall assemblies.

Permanent modular buildings may be Type V (wood frame, combustible) or Type II (steel, concrete, non combustible) and can have as many stories as building codes allow.

Primarily, four stages make up a modular construction project. First, design approval by the end user and any regulating authorities; second, assembly of module components in a controlled environment; third, transportation of modules to a final destination; and fourth, erection of modular units to form a finished building.

Modular contractors manufacture buildings (or contract to have buildings manufactured) at off-site locations. Responding to customer requests, they typically operate as general contractors on projects, coordinating the delivery, installation, site work and finish of the building. Construction primarily occurs indoors away from harsh weather conditions preventing damage to building materials and allowing builders to work in comfortable conditions.

Unique to modular construction, while modules are being assembled in a factory, site work is occurring at the same time or in some cases prior to construction. This allows for much earlier building occupancy and contributes to a much shorter overall construction period, reducing labor, financing and supervision costs. Saving even more time and money, nearly all design and engineering disciplines are part of the manufacturing process.

Also unique to modular construction is the ability to simultaneously construct a building’s floors, walls, ceilings, rafters, and roofs. During site-built construction, walls cannot be set until floors are in position, and ceilings and rafters cannot be added until walls are erected. On the other hand, with modern modular methods of construction, walls, floors, ceilings, and rafters are all built at the same time, and then brought together in the same factory to form a building. This process often allows modular construction times of half that of conventional, stick-built construction.

These practical time and money saving alternatives to site-built buildings effectively meet the specialized needs of diverse businesses. Customers served by modular construction include federal, state, provincial, and local governments, school boards, corporations, non-profit organizations, retail establishments, healthcare providers, as well as individuals, partnerships, and sole proprietors. Other uses include medical facilities, airport facilities, military installations, restaurants, churches, and remote telecommunications stations.
FMI CORPORATION, the largest provider of management consulting, investment banking and research to the engineering and construction industry, reported in its fourth quarter 2010 Nonresidential Construction Index (NRCI) that modular construction is considered a growth opportunity for the industry.

The NRCI report indicates that in light of the long recession, more contractors are thinking lean and looking for ways to build for less. FMI asked about one trend that could help make the construction business leaner and more efficient, the growth of prefabrication and modular construction. Although the trend for greater use of off-site construction has been growing slowly for years, the recession and new technologies are set to increase the use of manufacturing processes and environments for construction.

Only 11% of the panelists surveyed expected growth for the next three years to be less than 1%, or less than expected GDP growth. Thirty-seven percent expect growth to be between 1% and 5%, but 49% expect growth to exceed 5%. Panelists expect this area to grow faster than the market in general due the growing use of BIM, owners wanting projects faster and for lower cost, safety, quality and the shortage of skilled labor once markets return to more normal growth.

“This report confirms what we’ve believed for a long time, that modular construction is poised for take-off,” said Tom Hardiman, Executive Director of the Modular Building Institute. “Over the past five years there has been a growing interest in the commercial modular construction market from building owners and investors alike. We expect to see continued growth for our commercial building providers as the modular construction industry continues to adopt innovative and efficient construction techniques.”

For more information, or to download the free report, visit: http://construction.com/market_research.
It is now widely accepted that the modular construction process is more resource efficient, not only in terms of labor and money, but also with regard to material usage and waste. The previously cited McGraw-Hill Smart Market Report (on page 6), indicated that 77% of architects, engineers and contractors surveyed reported a reduction in site waste. Incredibly, 44% reported that site waste was reduced by 5% or greater.

The EPA reports that the average amount of construction and demolition waste generated for a non residential project is 4.34 lbs/sq ft. For a 10,000 square foot facility, this amounts to 43,400 pounds of waste, or over 21 tons! If owners are able to reduce this amount by just 5% using modular construction techniques, that translates into 2,170 pounds of waste, or over a ton of waste per project diverted from the landfill.

Projects utilizing modular construction also have the ability to reduce waste in another manner. Due to the fact that these buildings are designed and constructed to be assembled on site, they are also therefore “designed for disassembly” or “design for deconstruction (DfD).” In short, it is much more practical to disassemble a modular project and salvage or reuse significant components of the building compared to a similar site built facility.

The increasing use of BIM technology as well as the general public’s growing disdain to pay for wasteful practices are two key reasons why modular construction techniques will continue to gain in popularity.

The picture to the bottom right is an example of DfD. The original building was a 10-unit custom office. After 6 years of use, the building was disassembled and sent to storage. In 2009, a development in Florida required a sales center. It was determined that 6 of the original 10 units could be relocated and used with renovation. The renovated building features 10 ft. tray ceilings, custom millwork, granite countertops, and a portico entry with a four-plane clay tile roof system.

Repurposed modular buildings turn into Chetwynd Seniors’ Housing. Over 320 modular housing units from the Olympic and Paralympic Village at Whistler were relocated and converted into 156 permanent, affordable apartments for low-income seniors.
MARKETS SERVED

MARKET SIZE
Permanent modular buildings make up approximately 42% of the total modular construction industry’s $5 billion in annual revenues in North America (leasing and sales of relocatable buildings account for the remainder). For 2010, these companies reported revenue from the following top markets:

Permanent modular buildings are considered real property, built to the same building codes and requirements as site-built structures, and are depreciated in a similar manner. As such, the markets for permanent modular construction are similar to the markets for site-built contractors, with few exceptions.

K-12 EDUCATION
From single classrooms to complete campuses, modular construction offers public, private, and charter schools what other construction methods cannot: accelerated project timelines, more economical pricing, and less disruption. Permanent modular schools are indistinguishable from other schools and can be constructed to any architectural and customer specifications. MBI members design and build schools of all types and sizes using traditional building materials such as wood, steel, and concrete. Virtually any size permanent school can be built, installed, and ready for occupancy in as little as 90 days. Perhaps most importantly, using off-site technology, open construction sites are eliminated while school is in session. Students are safer and teachers can compete with less disruption.

HIGHER EDUCATION STUDENT HOUSING
From single dormitories to complete campuses, permanent modular construction offers public, private, and charter schools what other construction methods cannot: accelerated project timelines, more economical pricing, and less disruption. Permanent, modular student housing is indistinguishable from other school buildings and can be constructed to any architectural and customer specifications. MBI members design and build student dorms of all types and sizes using traditional building materials like wood, steel, and concrete. Virtually any size permanent student housing facility can be built, installed, and ready for occupancy, some in as little as 90 days.

OFFICE & ADMINISTRATIVE SPACE
Permanent modular buildings serve as corporate headquarters, satellite bureaus, institutional and administrative buildings, and offices for all business types. Modern single- and multi-story buildings can be configured in a number of ways to include independent offices, conference rooms, elegant lobbies, kitchens, restrooms, and large open spaces for cubicles or other partition systems. MBI members have architectural and engineering designs for workspace planning, storm water management, landscaping, parking, and zoned heating and air conditioning. If it is time to capitalize on company growth, modular construction offers a fast, economical approach.
RETAIL & HOSPITALITY

Simply put, quicker occupancy equals quicker return on investment. Modular construction is accelerated construction. Why is this so important to banks, restaurants, convenience stores, child care centers, and other retail establishments? Because earlier occupancy means a customer generates revenue faster. In fact, it’s not uncommon for many modular buildings to be up and running in as little as 24 hours—an important consideration for retailers of all types. Typical retail applications include hotels and motels, restaurants and diners, banks, golf pro shops, convenience stores, gas stations, car washes, college bookstores, and concession stands, to name a few. MBI contractors provide a full array of services including site, mechanical, and electrical work. Customers can accommodate their emerging business with modular buildings customized to their financial needs, space requirements, and deadlines.

HEALTHCARE

Perhaps a customer’s interest is in serving patients as quickly as possible in the most safe and aesthetically-pleasing environment available. If so, modular construction offers quiet, safe, and clean applications for medical, surgical, clinical, and dental use. The insight MBI contractors have from designing and building thousands of medical facilities has resulted in satisfied healthcare professionals throughout the world. If an organization or community needs a new rehabilitation clinic, emergency room, operating room, hospital extension, laboratory, diagnostic center, or other medical facility, remember that modular construction can be used for custom-built facilities with the tightest budgets while maintaining strict medical and aesthetic specifications.

PUBLICLY FUNDED FACILITIES

Governmental users consist of federal, state and local public sector agencies and organizations, public education entities, and military housing and administrative projects. The industry has enjoyed success in focused niches such as prisons and jails, courthouses, military installations, national and border security buildings.

MARKET SHARE

By many accounts, it can be expected for more owners, developers and contractors to consider modular construction practices. In fact, the recent McGraw-Hill SmartMarket Report on modularization indicates that contractors forecast a 22-23% increase in usage of prefabrication and modularization over the next two years. Additionally, a recent FMI survey indicated a growth opportunity for modular construction.

The U.S. Census Bureau reports monthly the value of construction put in place for residential and commercial, and for public and private projects. Year end data for 2010 indicated that the total U.S. construction put in place was about $788 billion annualized-$236 billion in residential and $552 billion in non-residential.

The non-residential category can be further delineated into “buildings” and non building categories such as power, highway and street, and water supply. Building categories that align with industry key markets are: lodging, office, commercial, healthcare, and educational. These categories totaled $201 billion for year-end 2010. The $2 billion PMC building market, therefore is roughly one percent of this total.
target market: STUDENT HOUSING

This 160-bed, 80,000 sq. ft. building, The Modules, is near Temple University in Philadelphia, Pennsylvania. Designed by Interface Studio Architects, the apartment project includes design-driven living space and cutting-edge amenities. What’s impressive is not just that it is a prefab, green, contemporary apartment building, but that it may be the largest modularly-constructed LEED for Homes project in the nation. Major features include light-filled common spaces, generously-sized operable windows, environmentally sound finishes, and a green roof terrace with dramatic views of the Philadelphia skyline. The project was designed, bid, manufactured and occupied within 12 months.

Architectural Excellence

These three-story Residence Suites of Bryn Athyn College emulate an “old world” charm prevalent on the campus, with the cut stone, brick and stucco facade with lead coated copper trims and gutters. Each residence building contains 6 apartment style suites, with 2 double and 1 single occupancy bedrooms, bath and beautifully appointed open concept living spaces. Painted gypsum in accent colors, Italian ceramic tiled floors in common areas, quartz countertops and solid wood cabinets and stainless steel appliances all come together to offer the students a luxurious living environment. A center stairwell opens up two stories to display a large cathedral type chandelier.

Technical Innovation

The steel framed building with pre-poured concrete floors offers the permanence and performance of conventional construction. The innovative use of “faux” chimneys on each building houses the lower floor ADA compliant laundry room and carries the mechanicals from the basement to the third floor suites. The entire chimney structure was prefabricated off site, and craned into position on site. Dormers were prefabricated at the plant and installed on site with the roof.

Cost Effectiveness & Energy Efficiency

“Modularizing” the false chimneys off site, and pre-building the dormers helped reduce the on-site time and cost as well as disruption to the campus. Each room or area of the residences have Energy Star rated P-Tach unit heat pumps installed for energy efficiency. Insulation is a combination of spray foam in the roof truss and floor areas, and fibreglass with liquid spray applied vapour barriers for the walls, exceeding most residential standards. These buildings were completely built together at the plant, including stairwells, ensuring fit and precision alignment of the modular components so site time was minimized.
Data for this report was compiled from previously conducted surveys with contractors and manufacturing companies (both members and non-members of MBI). In addition, MBI obtained data from a variety of sources including public statistics and information, information obtained from state and provincial modular regulatory agencies, and direct communication with company leaders.

AVERAGE BUILDING PROJECT SIZE

In many cases, a project can be entirely completed by a modular contractor. These turnkey projects typically range in size from 5,000 to 10,000 square feet. In fact, respondents indicated that 65% of their projects were under 5,000 square feet; 20% of projects were between 5-10,000 square feet; and 7% of projects were between 10-25,000 square feet. Eight percent of projects reported were over 25,000 square feet.

In other cases, modular construction is integrated into the overall project with a traditional general contractor overseeing the site work, foundation, utilities, and various phases of the building itself. These “hybrid” projects allow modular construction techniques to be employed on much larger projects than the typical turnkey modular project. It is not uncommon for modular construction to be utilized on hybrid projects exceeding 100,000 square feet.

Most modular contractors are not limited by project size, but rather by other factors such as bonding capacity, staff resources, or simply a lack of understanding about the modular process by the owner or architect. While some companies are capable of much larger projects, many survey respondents indicated that a single turnkey project in the $10-15 million range is well within their scope.

PRODUCTION AND PRODUCTIVITY

Modular manufacturers are located throughout North America, with larger “clusters” of manufacturers in Pennsylvania, Georgia, Texas, Indiana, California, and Alberta. Most manufacturers in North America are single location operations and can competitively transport units within a 500 mile radius of their plant. Peak employee size varied significantly obviously impacted by market and geography as well as the physical size of the plant. While not necessarily an indication of actual activity, the average manufacturer is approved to build in 20 states.

In general, larger facilities employ between 140-150 workers during their peak production, while smaller plants employ between 60-70. Many economists and state agencies use a “multiplier” to determine an industry’s total impact. Common construction industry multipliers range from 1.76 to 2.12, meaning that for every construction job, another 0.76-1.12 jobs is indirectly created.

The typical modular manufacturer produced about 158,000 square feet in 2010, producing an average of 232 “floors” or “modules.” This production is about 7% less than reported in 2009. Each module is roughly 600-700 square feet, commonly 12 feet wide by 50+ feet in length. Transportation regulations are commonly the limiting factor in module size.

Depending on the level of customization required by the owner and architect, most modules leave the factory 60-90% complete, with wiring, plumbing, structural, and mechanical systems inspected and approved before arriving at the site.
REVENUE & PRICING

Annual corporate revenue attributed to PMC was just under $10 million per company. Many of these companies also generated additional revenue from other sources such as general contracting services or through leasing activities associated with relocatable buildings.

Companies reported an increase in pricing from material suppliers in 2010 compared to 2009. Thirty-eight percent reported increases of 1-3%, while 19% reported increases of 4-7%.

Fifty percent of the PMC companies are forecasting revenues for 2011 to be about the same or slightly better than 2010 (1-5%).

MARKET INDICATORS

There are several market indicators that serve as predictors for the health and viability of the commercial modular industry. By most accounts, 2010 started off slow and ended with an overall decrease in non residential building activity. McGraw-Hill Construction (MHC) reported that non residential building dropped 9% for 2010. However, several indicators point towards an increase in construction activity in the near future.

Non-Residential Construction Starts – MHC reported that new non residential construction starts for December 2010 jumped 25%, lead by a significant increase in larger healthcare projects.

The Architectural Billings Index (ABI) is a leading economic indicator of construction activity and shows an approximate 9 to 12 month lag time between architectural billings and construction spending, with a score above “50” indicating an increase in billings. The ABI for December 2010 was 54.2. This marked the first time in the last three years that the ABI was above 50 for two consecutive months.

In Canada, Reed Construction reported that commercial construction recorded nearly 30 million square feet of new project starts, 17% higher than in 2009. This growth was driven by government office buildings, recreational, and retail sectors. Industrial construction, such as projects in Alberta’s Oil Sands region, are expected to lead the modular construction activities in 2011.

School Population Increase in K-12

Public elementary enrollment is projected to continue a pattern of annual increases through 2016. Public secondary enrollment is projected to decrease 2% between 2007 and 2011, and then begin increasing again through 2016. Public secondary school enrollment in 2016 is expected to be about 2% higher than in 2007.

Federal Government

While not as strong as in previous years, the federal government remains “Fortune 1” when it comes to procurement. Many construction opportunities were put on hold while Congress grappled with continuing resolutions to patch the 2010 budget. Nonetheless, BRAC and other military programs still present strong opportunities for modular construction.

RESEARCH AND DEVELOPMENT

The Modular Building Institute continues to advance construction industry competitiveness through a network of research and educational partners. MBI has two affiliated foundations – the Modular Building Institute Educational Foundation, a U.S. based 501(c)3 entity, and the Modular Building Institute Canadian Foundation.

Through these entities, MBI hosts student design competitions, awards scholarships, and underwrites white papers and other industry research. MBI also supports and partners with university-based programs in architecture, engineering and construction management on white papers, presentations, and research and development opportunities.
MBI estimates the PMC market in North America is about $2 billion, making this region the largest in terms of revenue. It is expected that an additional $4 billion in revenue is generated in the modular construction industry outside of North America, perhaps higher. Data from regions that utilize modular on a regular basis is difficult to obtain.

Large markets for modular construction use include the UK, Japan, and Australia, while China and India are poised to reshape the entire construction industry. While smaller in terms of total revenue, regions such as Scandinavia, where an estimated 90% of homes are prefab and modular, are leaders in advancing modular construction techniques.

China & India – While it is virtually impossible to get accurate construction data from these regions, no one will dispute the insatiable appetite these giants seem to have for construction services and materials. By some accounts, non residential construction spending in India is expected to exceed US $300 billion by 2013, while China’s market is expected to be double that figure. China builds the equivalent of one “Chicago-sized” city each year. A one percent market share for modular construction would equate to nearly US $10 billion in these regions, five times the size of the current US market.

United Kingdom – In the U.K., the market for modular construction is approximately $2.44 billion, of which 33% is associated with leasing activity while 67% ($1.63 billion) is for sales of modular buildings. Key markets in the U.K. are similar to the U.S. – education, healthcare and offices.

The modular construction industry is driven by different markets in different parts of the world. For example, the energy/extraction industry utilizes modular facilities heavily in parts of South America and Australia, as well as in Northern Alberta, Canada. Oil, natural gas, and coal extraction often occurs in underdeveloped parts of these regions, creating a demand for building infrastructure to accommodate workforce housing and administrative office space. This adoption of modular construction in the energy sector has often led to wider spread acceptance in other markets such as education, as is the case in both Alberta and Australia.
Haydon Bridge High School has recently taken delivery of the first zero carbon modular school building in the UK which was manufactured by North of England based EnviroHomes Limited. Haydon Bridge High School was awarded £1 million to create a new building that would minimise the school’s overall carbon footprint. The building is comprised of a 65 square metre classroom area, plus a 90 square metre science lab. The classroom area also includes a chicken coup and incubator to help the students learn directly about the rearing and care of animals.

The result is a landmark building which not only showcases renewable energy but provides a state-of-the-art environment in which students can learn about it. Just outside there is an area with polytunnels, a greenhouse and raised beds where students can grow their own produce.

Simon Astill, Managing Director of EnviroHomes explains, “Right from the start the Haydon Bridge brief called for a zero carbon building. Our ‘fabric first’ approach means starting with the choice of insulation materials to be used. Then we selected the most efficient heating, lighting and control systems to suit the needs of the building, the students and staff who would be using it. Finally we added renewable technologies to the building, which in this case includes a chicken coup and incubator to help the students learn directly about the rearing and care of animals. In fact the addition of these gives the building an A+ energy rating which shows the building to be carbon negative, that’s to say the building will generate more power than it uses.”

This is a purpose built, permanent building with full planning permission. The other key point to make is that our efficient modular construction method provides a high quality zero carbon building, manufactured, installed and finished in 21 weeks. From the moment the manufactured sections arrived on-site, there was a fully watertight building within 10 hours.

Robert Doran, Principal Building Control Surveyor for Allerdale Borough Council commented, “My role was to check the building for compliance with building regulations which involved regular inspections for quality control and consistency. Because this method of manufacturing is done inside a controlled factory unit, consistency is much easier to achieve. In addition there’s no degradation of materials due to bad weather. All in all this is a very efficient construction method which has resulted in a high quality building that’s fully compliant with all building regulations.

Located in a colorful mixed industrial/artist/residential urban neighborhood in Oakland, California, ZETA launched the first net zero energy, urban infill, multifamily project.

The building received a LEED Platinum rating (99.5 points out of 89), a 206 Green Point Rating, and EPAs highest indoor air quality rating, Indoor airPLUS. Additionally, this project has qualified for the DOE’s Builders Challenge program that sets a high bar for building energy efficiency. It was also the winner of the 2009 Green Builder Home of the Year Award, the PCBC Gold Nugget Award for Net Zero Energy, and AIA San Francisco’s Energy & Sustainability Merit Award.

Some building features:
- Passive solar design
- Z1nergy automated energy controller
- Thermal storage conditioned basement
- Air-to-air heat exchanger
- Whole-house integrated fresh air system
- Heat recovery ventilator
- Wastewater heat recovery system
- High efficiency lighting – LED and CFL
- EnergyStar® appliances
- 100% photovoltaic power
- Rigid insulation wrapped building system
- High performance cellulose and spray foam insulation
- Sustainable finishes including locally produced artisan ceramic tiles, 100% recycled glass & cement composite countertops, locally fabricated casework and salvageable and recycled materials

Project Energy Metrics (kWh/year)
- Renewable Energy Consumption
- Net Energy Use
- Projected Energy Production
- 0

*Photos courtesy of ZETA Communities, Nandita Geerdink, Louis Langlois and Taeko Takagi
*Photos courtesy of EnviroHomes Ltd. - Haydon Bridge High School, Northumberland County Council
Research from construction industry experts such as McGraw-Hill Construction and FMI indicate that prefabrication and modular construction techniques are poised to grow at a much stronger rate than traditional construction opportunities. The ability to incorporate lean manufacturing techniques, Building Information Modeling and sustainable construction processes are part of the reason for widespread optimism.

The reduced construction schedule advantage is appealing to any owner or developer interested in maximizing return on investment. In some cases, such as school campuses or healthcare facilities, the reduced site disturbance coupled with the quick turnaround are critical to the project’s success.

For these reasons, many Fortune 500 companies, government agencies, architects, and entrepreneurs are fueling the growth of the modular construction industry. As research and awareness of these advantages becomes part of the conventional wisdom, the market share for off-site construction is expected to double over the next five years.
MBI Staff

Executive Director
Tom Hardiman, CAE
x 158, tom@modular.org

Operations Director
Steven Williams
x 153, steven@modular.org

Communications Manager
Erin Whitt
x 152, erin@modular.org

Accountant & Office Manager
Annie Diggs
x 157, annie@modular.org

Marketing Specialist
Joni Lane, LEED Green Associate
x 156, joni@modular.org

Business Development Director
David Sikora
x 155, david@modular.org

Board Members:
Rick Bartolotti
President
Universal Modular Building Solutions, Inc.

Kendra Cox
Production Manager - Stayton
Blazer Industries, Inc.

William Duffield
VP and General Manager
McDonald Modular Solutions, Inc.

Walter Griffin
Modular Program Manager
Mule-Hide Products Co., Inc.

Garth Haakenson
CEO/President
Pacific Mobile Structures, Inc.

Bill Haliburton
Vice President, Manufacturing
ATCO Structures & Logistics, Ltd.

Doug Henriquez
Director
Clayton Building Solutions

Harry Kukas
Senior VP
Black Diamond Group

Nora McGrath
Director
M Space Holdings LLC

Christopher Peterson
Vice President, Finance & Operations
Satellite Shelters, Inc.

Laure Robert
VP Sales & Marketing
NRB, Inc.

Kathleen Tell
VP Sales
Tell Manufacturing, Inc.

Jody Werner
Vice President & General Manager, Southeast
Vanguard Modular Building Systems, LLC

Kathy Wilmot
Vice President
Wilmot Modular Structures, Inc.

President
Mike Ridley
President
Brito Structures

President Elect
John Lieffrig
Region Vice President
ModSpace

Vice President
Michael Bollero
President/CEO
Southern Modular Industries, LP

Treasurer
Gary Buckrath
CEO
Acton Mobile Industries

Secretary
Wesley Carter
Sales Manager
Warrior Group

Past President
Joseph Lopardo
Vice President, Modular Buildings
Williams Scotsman

Executive Director
Tom Hardiman
Executive Director
Modular Building Institute

2011 MBI Sponsors

MBI sponsors are commercial modular construction leaders who align themselves with MBI in a collaborative effort to promote the industry, educate participants within the industry, and ensure a positive and ethical business environment throughout the industry.

MBI Headquarters
944 Glenwood Station Lane, Suite 204
Charlottesville, Virginia 22901 USA
Toll-free phone: 888-811-3288
Phone: 434-296-3288
Fax: 434-296-3361
info@modular.org
www.modular.org